
UIUC, CS 598 FTD (Spring 2022)

BFT Protocol Forensics

Presented by: Chirag Shetty, Milind Kumar V

22 April 2022

The problem we will look at

•SMR  

◦with a single value  

•Partial synchrony 

•Byzantine faults 
 

Parameters of the algorithm

v1

v2

vn

(n-f) honest

f malicious
n = 3t + 1

Guarantees are provided when f < t + 1

• Safety (Agreement) 

• Liveness (Termination) 

• Validity 

f <= t : All good

v1

v2

vn

(n-f) honest f malicious

commit v

commit v

commit v
commit v

n = 3t + 1

commit v

Don’t Care

Don’t Care

time

……… algorithm …….….

f<=t

But what if f > t?

Forensics: investigation after a safety violation

• Identify malicious nodes 

• As many as possible 

• With cryptographic proof 

• In a distributed fashion 

• Formalized as forensic support 

Parametrizing forensic support as (m, k, d)

• m: maximum number of Byzantine replicas 

• k: number of honest replicas needed for proof 

• d: number of identifiable Byzantine replicas  

PBFT-PK has (2t, 1, t+1) support

PBFT Steady State

n = 4, t=1

PBFT Steady State

n = 4, t=1

propose (value x in view e)

PBFT Steady State

n = 4, t=1

propose (value x in view e)

vote1 (for x, e) -> Only one vote

PBFT Steady State

n = 4, t=1

propose (value x in view e)

vote1 (for x, e)

PBFT Steady State

n = 4, t=1

propose (value x in view k)

vote1 (for x, k)

On receiving 2t+1 vote1 for a value,

lock value, send vote2

No two values can get vote2,

Prevents leader equivocation

2t+1

2t+1
t+1

PBFT Steady State

n = 4, t=1

propose (value x in view e)

vote1 (for x, e)

Lock on (x,e):
1) vote2 for only it in view
2) To promote it in the next view

PBFT Steady State

n = 4, t=1

propose (value x in view e)

vote1 (for x, e)

On receiving 2t+1 vote2 for (x,e),
commit value x

2t+1 vote2 means enough nodes
have promised to lock x.

So future views will only have x

PBFT Steady State

n = 4, t=1

propose (value x in view e)

vote1 (for x, e)

Remember, commit
needs

2t+1 signed vote2

Every commit comes with
a certificate

commit v

commit v

commit v

But what if f > t?

f > t: Case 1 - Liveness Violation

v1

v2

vn

(n-f) honest f malicious

commit v

commit v

n = 3t + 1

Don’t Care

Don’t Care

time

All or some honest

nodes never commit

f>t

f > t: Case 2 - Safety Violation

v1

v2

vn

(n-f) honest f malicious

commit v’

commit v

commit v
commit v

n = 3t + 1

commit v

Don’t Care

Don’t Care

time

Some two honest nodes

commit different values

f>t

Suppose, there was a safety violation:

Two nodes committed two different values

Safety Violation: “The day after”

v1

v2

vn

(n-f) honest f malicious

commit v’

commit v

commit v
commit v

n = 3t + 1

commit v

time

v’ != v

A Safety violation

happened.

Now identify the
malicious nodes commit v

commit v

f>t

Case 1: In same view

Find the culprits

commit v

commit v’

Find the culprits 2t+1

2t+1
t+1

commit v

commit v’

votes for v

votes for v’

Find the culprits 2t+1

2t+1
t+1

commit v

commit v’

votes for v

votes for v’
Culprits

Find the culprits 2t+1

2t+1
t+1

commit v

commit v’

votes for v

votes for v’
Culprits

Commit msgs have record of vote2’s

Just the two commit messages
is enough to find the culprits

No transcript needed

Case 2: Across views
(x,e) and (x’, e’)

Timeout waiting for a commit-> view change

At any node, If leader seems faulty,

send blame(leader e) + status to all

Timeout waiting for a commit-> view change
At any node, If leader seems faulty,

send blame(leader e) + status to all

On receiving 2t+1 blames,

leader e+1 can request view change

At any node, If leader seems faulty,

send blame(leader k) + status to all

On receiving 2t+1 blames,

leader e+1 can request view change

status = “I am locked on x1 for some view e1”
with proof of enough vote1

Timeout -> view change

At any node, If leader seems faulty,

send blame(leader e) + status to all

On receiving 2t+1 blames,

leader e+1 can request view change

Promise to ensure future views
 re-propose potentially

committed value
status = “I am locked on x1 for some view e1”

with proof of enough vote1

Timeout -> view change

On receiving 2t+1 blames,

leader e+1 can request view change

Why 2t+1?

Timeout -> view change

On receiving 2t+1 blames,

leader e+1 can request view change

Why 2t+1?

Timeout -> view change

So that the new leader is guaranteed
to see atleast one node that has the latest lock

On receiving 2t+1 blames,

leader e+1 can request view change

2t+1

Locked on (x,e) i.e sent vote2

Why 2t+1?

Some node

committed (x,e)

Timeout -> view change

On receiving 2t+1 blames,

leader e+1 can request view change

t+1
t

Why 2t+1?

Locked on (x,e) i.e sent vote2

Some node might have

committed (x,e)

Timeout -> view change

On receiving 2t+1 blames,

leader e+1 can request view change

t+1
t

Statuses rcvd
by new leader

Why 2t+1?

Locked on old e

Timeout -> view change

On receiving 2t+1 blames,

leader e+1 can request view change

t t
t

1

Statuses rcvd
by new leader

Why 2t+1?

Locked on old e

Locked on (x,e) i.e sent vote2

Some node might have

committed (x,e)

Timeout -> view change

On getting 2t+1 statuses, new leader sends proposes

t t

Locked on (x,e)

t

1

Atleast 1 honest status from latest view
Statuses rcvd
by new leader

Locked on old e

Timeout -> view change

This honest status ensures, new leader proposes

same value that is locked in a previous view

t t

Locked on (x,e)

t

1

Atleast 1 honest status from latest view
Statuses rcvd
by new leader

Locked on old e

Some node might have

committed (x,e)

Timeout -> view change

What can happen if f>t?

View change : What can happen if f>t?

t t

Locked on (x,e)

t

1

Statuses rcvd
by new leader

Locked on old e

f = t+1
Malicious nodes can

Some node might have

committed (x,e)

View change : What happens if f>t?

t t

Locked on (x,e)

t

1

Statuses rcvd
by new leader

Locked on old e

f = t+1
Malicious nodes can

Malicious nodes can influence what a new leader picks

Some node might have

committed (x,e)

View change : What happens if f>t?

t t

Locked on (x,e)

t

1

Statuses rcvd
by new leader

Locked on old e

f = t+1
Malicious nodes can

Malicious nodes can influence what a new leader picks

How?

Some node might have

committed (x,e)

View change : What happens if f>t?

t t

Locked on (x,e)

t

1

Statuses rcvd
by new leader

Locked on old e

f = t+1
Malicious nodes can

How?
Ensure new leader doesn’t see the most recent locked value

Some node

committed (x,e)

View change : What happens if f>t?

t t

Locked on (x,e)

t+1

Statuses rcvd
by new leader

Locked on old e

How?
Ensure new leader doesn’t see the most recent locked value

Send an old or no lock in status

Some node

committed (x,e)

View change : What happens if f>t?

t t

Locked on (x,e)

t+1

Statuses rcvd
by new leader

Locked on old e

How?
Ensure new leader doesn’t see the most recent locked value

Send an old or no lock in status

So e+1 leader picks an old lock x’ or a new value (!= x)

Some node

committed (x,e)

View change : What happens if f>t?

t t

Locked on (x,e)

t+1

Statuses rcvd
by new leader

Locked on old e

Send an old or no lock in status

So e+1 leader picks an old lock x’ or a new value

History is forgotten. Then some node can commit x’ in future

Some node

committed (x,e)

View change : What happens if f>t?

t t

Locked on (x,e)

t+1

Statuses rcvd
by new leader

Locked on old e

Send an old or no lock in status

So e+1 leader picks an old lock v’ or a new value

History is forgotten. Then some node can commit x’ in future

Some node
committed (x,e)

How to identify the culprits?

t t

Locked on (x,e)

t+1

Statuses rcvd
by new leader

Locked on old k

Send an old or no lock in status

v1

v2

vn

commit v

time

How to identify the culprits?

view e
view e*

Value changes

propose v’

view e’

commit v’

commit v’

v1

v2

vn

commit v

time

How to identify the culprits?

view e
view e*

Value changes

propose v’

view e’

commit v’

commit v’
All nodes follow protocol
Malicious help a commit All nodes follow protocol

Malicious nodes sent
status of a lock

lower than k

v1

v2

vn

commit v

time

How to identify the culprits?

view e
view e*

Value changes view e’

commit v’

commit v’Malicious nodes sent
status of a lock

lower than k

propose v’Propose
Statuses

t+1Commit
quorum

v1

v2

vn

commit v

time

How to identify the culprits?

view e
view e*

Value changes view e’

commit v’

commit v’Malicious nodes sent
status of a lock

lower than k

propose v’Propose
Statuses

t+1Commit
quorum

k = 1 since only one New
propose msg in e* is enough

It contains status message
showing who voted for x’

Some Thoughts

One commit msg and transcript of one other
node proves fault

But how to find e*?

of nodes investigated

One commit msg and transcript of one other
node proves fault

But how to find e*?

of nodes investigated

Although finally only one transcript is required,
multiple nodes must be contacted to find e*

One commit msg and transcript of one other
node proves fault

But how to find e*?

of nodes investigated

Ability to find e* also depends on what
information is exactly included with votes

How to detect a Safety Violation?

v1

v2

vn

commit v

commit v

commit v
commit v

commit v

time

commit v’

commit v

How to detect a Safety Violation?

v1

v2

vn

commit v

commit v

commit v
commit v

commit v

time

commit v’

commit v

Use definition of safety?

How to detect a Safety Violation?

v1

v2

vn

commit v

commit v

commit v
commit v

commit v

time

Safety says

 “All honest nodes

commit same values”

But then,

to know that a safety
violation happened,
shouldn’t we already

know the honest nodes?
commit v’

commit v

PBFT: Client uses weak certificate (t+1)

v1

v2

vn

commit v

commit v

commit v
commit v

commit v

time

commit v’

commit v

Sample t+1

values

Atleast 1 honest

node’s value

included and no two

believable commits

can differ

Source: PBFT, Castro’s Thesis, Chapter 2

PBFT: How to modify?
Suppose, We have implemented PBFT

Now we are told f>t and safety violation is
possible. We just need to detect it

What code change required? How many
replies should client wait for?

Source: PBFT, Castro’s Thesis, Chapter 2

PBFT: How to modify?
Suppose, We have implemented PBFT

Now we are told f>t and safety violation is
possible. We just need to detect it

What code change required? How many
replies should client wait for?

Source: PBFT, Castro’s Thesis, Chapter 2
Wait for all?

What about liveness violation?

Byzantine nodes (f>t) can easily violate
liveness by keeping quiet

Progress needs 2t+1

What about liveness violation?

Byzantine nodes (f>t) can easily violate liveness by
keeping quiet

But can we identify such liveness violation and
nodes that cause it?

What about liveness violation?

Byzantine nodes (f>t) can easily violate liveness by
keeping quiet

But can we identify such liveness violation and
nodes that cause it?

Large view number without commit indicates
possible liveness issue. But can’t prove anything.
Psync network = can’t distinguish slow vs dead

Thank you

Some impossibility results:
Intuition

No forensic support for PBFT with f>=2t+1

Byzantine nodes can commit any value without involving
honest nodes

No forensic support for PBFT with f>=2t+1

Byzantine nodes can commit any value without involving honest
nodes

So they can cause safety violation, without leaving enough trace in
honest nodes transcript

No forensic support for PBFT with f>=2t+1

Byzantine nodes can commit any value without involving honest
nodes

So they can cause safety violation, without leaving any/enough
trace in honest nodes transcript

Proof: Standard way - Construct two worlds
Show that in both cases input to algo is same, but expected outputs

are different.

PBFT-MAC: No forensic support

Messages don’t have to be signed. Instead the
channels are authenticated.

PBFT-MAC

No Forensics possible. Msgs can’t be
“forwarded”

PBFT-MAC

No irrefutable proof possible.
“It’s my word against yours”

PBFT-MAC

No irrefutable proof possible.
“It’s my word against yours”

What have we not told you?

• Hostuff 

• Algorand 

• VABA 

• Diem integration 

References

• Sheng, Peiyao, et al. "BFT protocol forensics." Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. 2021. 

• Castro, Miguel, and Barbara Liskov. "Practical byzantine fault tolerance." OsDI.
Vol. 99. No. 1999. 1999.

• BFT Protocol Forensics, Kartik Nayak, https://www.youtube.com/watch?
v=hSRK6PhBSjI

• BFT Protocol Forensics, Peiyao Sheng, https://www.youtube.com/watch?
v=HZrCsvOnY2I  

https://www.youtube.com/watch?v=hSRK6PhBSjI
https://www.youtube.com/watch?v=hSRK6PhBSjI
https://www.youtube.com/watch?v=hSRK6PhBSjI
https://www.youtube.com/watch?v=hSRK6PhBSjI
https://www.youtube.com/watch?v=hSRK6PhBSjI
https://www.youtube.com/watch?v=hSRK6PhBSjI
https://www.youtube.com/watch?v=HZrCsvOnY2I
https://www.youtube.com/watch?v=HZrCsvOnY2I
https://www.youtube.com/watch?v=HZrCsvOnY2I
https://www.youtube.com/watch?v=HZrCsvOnY2I
https://www.youtube.com/watch?v=HZrCsvOnY2I
https://www.youtube.com/watch?v=HZrCsvOnY2I

So, Safety implies…

Source: PBFT, Castro’s Thesis, Chapter 2

Client can verify that

a committed value followed the protocol

(Faulty nodes can’t lie)

To cause a violation, Malicious nodes must cause

two believable unequal commits

