
Source separation using NMF for mixtures of musical notes

Milind Kumar V1

Abstract— Blind signal separation or source separation refers
to the separation of each of the individual sources from a
mixture of sources given little or no prior information about
the source components. This has been a topic of great study
and several techniques relying on matrix methods exist for
this task. Non-negative matrix factorization (NMF henceforth)
is one such technique popularly used for its representational
power and ease of implementation. In this work, NMF is in-
troduced, the central algorithm based on multiplicative update
rules is discussed and a comparison is drawn between local
implementations of the algorithm and the implementation in
scikit-learn. Following this, variants of the original algorithm
utilising priors of sparseness and temporal continuity are used
to perform source separation on mixtures of musical notes.
The variation of the signal to noise ratio (SNR) is studied
for different variants of NMF, different windows and window
lengths and different weights of the sparseness and temporal
continuity cost functions.

I. INTRODUCTION
Source separation refers to the separation of components

from a single signal containing a mixture of these. Typi-
cally, most source separation algorithms act on the audio
represented in the frequency domain. Consequently, in the
frequency domain, this involves the recovery of both the
magnitude and phase spectra of the components constituting
the given signal. While this work is mostly centered around
the analysis of audio signals, images shall briefly be con-
sidered when considering the representational power of the
algorithm under consideration. There exist several techniques
from linear algebra that can be used for the purpose of source
separation such as independent component analysis, inde-
pendent subspace analysis, principal component analysis,
vector quantization and singular value decomposition. This
work explores the use of non-negative matrix factorization
(NMF) and its variants in source separation and attempts to
draw a comparison between them. A brief introduction to
NMF is presented in Section II. This work solely studies the
multiplicative updates proposed by Lee and Seung in [1].

Source separation has several applications especially in
audio signal processing such as the separation of audios cor-
responding to individual speakers from an audio of multiple
speakers speaking at the same time i.e the cocktail party
problem and speech enhancement by the removal of noise
from signals. NMF is extremely popular as a tool because
of its simplicity, performance and ease of implementation.
Further, the representational power of NMF discussed in
Section II-B contributes to its usage in source separation.

This work introduces NMF, discusses the reason for its
popularity, presents the multiplicative update rule algorithm

1Milind Kumar V is a senior undergraduate student at IIT Madras,
Chennai, Tamil Nadu, India. milind.blaze9@gmail.com

in [1] and Python code for the same. It also draws a
comparison between the presented implementation and the
implementation in standard Python libraries such as scikit-
learn. Following this, some applications of NMF are dis-
cussed and some results on application of NMF to images are
presented. A variant of this technique employing sparseness
and temporal continuity priors [2] is then applied to mixtures
of musical notes and the derivation of the update rules, the
effects of hyperparameter tuning, the effect of the window
used during data processing are analyzed and presented. Fol-
lowing this, other problems to be solved and some suggested
approaches are presented.

II. NON-NEGATIVE MATRIX FACTORIZATION

Consider a matrix V. V is said to be non-negative if every
element of V is non-negative. NMF refers to factorizing V
approximately as the product of two matrices W and H, each
of which is non-negative, i.e

V ≈WH (1)

Such a factorization affords one the opportunity to inter-
pret the columns of W as basis vectors and the columns
of H as the corresponding weights. If the matrix V is the
magnitude of the STFT of a given audio, the columns of
W can be interpreted as underlying components and the
elements of the jth column of H as the weights of the
components in the jth time frame. Clearly, this matrix
factorization is not unique. Further, metrics are required to
determine the quality of the approximation. In this work, we
shall look at the Frobenius norm defined as

||A−B||2 =
∑
ij

(Aij −Bij)2 (2)

and the divergence metric proposed in [1]

D(A||B) =
∑
ij

(
Aij log

Aij
Bij
−Aij +Bij

)
(3)

These are loss functions that capture the difference be-
tween the source and the reconstructed matrix and are lower
for better reconstructions. These are exactly zero when the
reconstructed matrix exactly matches the original matrix.

A. Update rules

[1] presents an elegant derivation minimising auxiliary
functions that form upper bounds for the functions in Equa-
tions 3 and 2 to arrive at the multiplicative update rules. For
Frobenius norm, these rules can be written as:

Haµ ← Haµ
(WTV)aµ

(WTWH)aµ
(4)

Wia ←Wia
(V HT)ia

(WHHT)ia
(5)

These can be vectorized easily as shown below and
consequently make for highly efficient code1

H ← H � WTV

WT (WH)
(6)

W ←W � V HT

(WH)HT
(7)

Similarly, the update rules for the divergence measure too
can be vectorized as below

H ← H �
WT V

WH

WT1
(8)

W ←W �
V
WHH

T

1HT
(9)

where 1 is a matrix of all ones of the same size as
the matrix V. The code1 however uses a slightly different
implementation of the update rules. These rules are iterative
update rules and need to be applied consecutively in an
iteration, i.e W is updated first followed by H. The loss
function was seen to diverge in a few cases when both the
matrices were updated simultaneously. More implementation
details and a discussion of the initialization to be used,
different NMF algorithms and applications of NMF can be
found in [3]. [1] provides theoretical justification for the use
of these rules. The validity of these rules was further verified
by performing NMF on a matrix containing entries drawn
from a uniform distribution between 0 and 1. The resulting
loss curves are presented in Figures 1 and 2.

Fig. 1: Variation of loss using Equations 6 and 7

There is no perceptible difference between the perfor-
mance of the direct python implementation of equations and

1 https://tinyurl.com/ulhqcjp

Fig. 2: Variation of loss using Equations 8 and 9

the implementation in a standard library such as scikit-learn.
Errors due to division by zero were avoided by adding a
fraction of the machine epsilon to each term in the non-
negative matrix to be factorized. This was tested against
scikit-learn and addition of a thousandth of the smallest
value of the input matrix and did not produce any significant
difference in the output produced or the behaviour of the loss
function with number of iterations.

B. Representational power

One of the reasons why NMF is so popular is that it
produces a highly interpretable factorization. Algorithms like
vector quantization take a very hard winner take all approach
and approximate each source signal with at most one signal.
Algorithms like PCA produce distributed representations but
these representations are not interpretable. A detailed study
of the representational capabilities of these three techniques
is presented in [4]. As a part of this work, the applicability
of NMF in learning parts that can be used to constitute full
signals is studied by decomposing the images present in the
CBCL dataset, MIT Center For Biological and Computation
Learning as done in [3] and [4]. These images have a
resolution of 19 × 19 each, nine of which are presented in
Figure 3. These are flattened out into vectors of dimension
361 and are arranged in a matrix. The component vectors
obtained when NMF is performed on this can then be
reshaped and treated as constituent images as shown in
Figure 4. The features thus plotted clearly possess human
discernible facial features- a smiling mouth, a nose, eyes
and a jaw. In contrast, features learnt by PCA as shown in
[4] do not form any discernible features. Figure 5 presents
the reconstructed images corresponding to those present in
Figure 3.

III. SOURCE SEPARATION FOR MUSICAL AUDIO

This portion of the work shall primarily focus on applying
NMF to mixtures of musical notes. NMF with both the
loss functions is applied to the audios under consideration
followed by the algorithm presented in [2]. Much of the

Fig. 3: Images from the CBCL face dataset

Fig. 4: Column vectors of the matrix W reshaped to form
basis images

subsequent work is empirical and revolves around the use
of temporal continuity and sparseness criteria as presented
in [2] (referred to henceforth as original work) to improve
the quality of separation.

A. Data

The data contains 7s musical audios created by mixing
pitched sounds and drum beats. All audios are sampled at
44100 HZ. At the time of writing, several of the audio
sources used by the author of the original work were un-
available for usage. Consequently, only the audios supplied
at http://www.cs.tut.fi/ tuomasv/demopage.html were used as
a part of this work. Much of the preliminary work presented
utilises only one of the four supplied audios. Consequently,
some of the preliminary results presented vary from those
presented in the original work. However, the similarity
increases remarkably as the number of audio files used is
increased from one to four.

B. Processing

The considered audio is split into segments, windowed
and the complex spectrogram is extracted for each audio
considered. The overlap between successive segments is
50% for all the experiments performed and is not varied.
On the other hand, the number of components (columns
of the matrix W, r henceforth) and the window used are

Fig. 5: Images reconstructed after factorization

extensively experimented with. This is then separated into
the magnitude and phase spectra. Much of this work deals
only with the magnitude spectrum V of the audio. NMF is
then performed on V to obtain the matrices W and H. The
magnitude spectrogram of the ith component is reconstructed
as the outer product of the ith column of W and the ith row
of H. The quality of this reconstruction can be improved
by using sparsity and temporal continuity criteria on top of
vanilla NMF. The complex spectrogram of the component
is obtained by performing the Hadamard product of the
magnitude spectrogram with phase of the original signal.
The audio can be reconstructed by considering the ISTFT
of this product. Components are clustered together using the
original sources used to create the mixture. Each component
is allocated to that source with which it has the highest SNR
as given by Equation 10.

SNR =

∑
k,t[Y]2k,t∑

k,t([Y]k,t − [Ŷ]k,t)2
(10)

Here, Y is the original (reference) spectrogram and Ŷ is
the reconstructed spectrogram. The same metric is used to
evaluate the quality of the reconstructed audio with respect
to the original audio. The implementation2 uses the librosa
package from Python.

C. Adding temporal continuity and sparseness priors [2]

Section III-E presents the performance of plain NMF for
source separation in the given audio. However, the algorithm
presented in the original work can be shown to outperform
vanilla NMF. This algorithm adds two additional terms to
the divergence loss function that help make the outputs
sparse and gains of an audio over different time frames more
continuous. Divergence is used as the reconstruction error
term cr as it is linear in scaling (see Equation 11 and thus
is sensitive to observations at lower energies.

D(ap||aq) = aD(p||q) (11)

2 https://tinyurl.com/y9ldovvq

The temporal continuity cost function is defined as below:

ct =

J∑
j=1

1

σ2
j

T∑
t=2

(ht,j − ht−1,j)
2 (12)

where σj is defined as

σj =

√√√√ 1

T

T∑
t=1

h2t,j (13)

Minimising Ct ensures that the gains of the jth component
do not vary wildly over consecutive time frames and that
the variation is relatively smooth. Further a sparseness cost
function is also added which is defined as follows

cs =

J∑
j=1

T∑
t=1

∣∣∣∣ht,jσj
∣∣∣∣ (14)

The update rule for the matrix W remains the same as
Equation 9. However, the update rules for the matrix H
are obtained by considering the ratio of the positive and
negative terms in the gradients of the cost function given
by Equations 15 - 20. It is worth noting that this gradient
computation is only a technique that works well in this case
and unfortunately has no theoretical backing.

∇c+r (W,H) =WT 1 (15)

∇c−r (W,H) =WT V

WH
(16)

[∇c+t (H)]j,t =
4Thj,t∑T
i=1 h

2
j,i

(17)

[∇c−t (H)]j,t =2T
hj,t−1 + hj,t+1∑T

i=1 h
2
j,i

(18)

+
2Thj,t

∑T
i=2(hj,i − hj,i−1)

2∑T
i=1 h

2
j,i

[∇c+s (H)]j,t =
1√

1
T

∑T
i=1 h

2
j,i

(19)

[∇c−s (H)]j,t =
hj,t
√
T
∑T
i=1 hj,i(∑T

i=1 h
2
j,i

)2 (20)

The loss function is defined as

c = cr + αct + βcs (21)

The update is given by

H ← H � ∇c
−
r + α∇c−t + β∇c−s

∇c+r + α∇c+t + β∇c+s
(22)

Some implementation details worth mentioning are that
Equation 18 does not consider the cases when t = 1 or t = T

which require the 0th and T+1th column of the matrix H. A
rigorous derivation yields that Equation 18 holds if the 0th

column is assumed to be equal to the first and the T + 1th

column is set equal to T th.

D. Experiments

A basic implementation2 can provide an illustration of
the effects of applying NMF optimising both divergence and
Frobenius norm to the audio. Three sets of experiments were
performed to validate the results presented in [2]. For each
of the experiments, the SNR value obtained was averaged
over all the sources.

1) Varying r: The first experiment involved varying the
value of r i.e the number of components obtained after
factorization and determining the effect of the same on the
SNR. The number r was varied from the minimum number
of sources present to an arbitrarily chosen maximum of 40.
Each run of the experiment produced a comparison of the
three different algorithms discussed thus far. This experiment
was run several times by varying the values of α and β.
The overlap percentage was kept fixed at 50%, number of
iterations at 1000, frame size and FFT size at 40ms and the
window used was Hann.

2) Varying alpha and beta: This experiment studies the
variation of the SNR of the reconstructed magnitude spec-
trogram with the variation in the hyperparameters α and β.
The effect of one parameter is studied while the other is set
to zero. Consequently, only the loss function in [2] is used.
This experiment is run several times by varying r. Further,
the overlap percentage was kept fixed at 50%, number of
iterations at 1000, frame size and FFT size at 40ms and the
window used was Hann.

3) Varying the window used: This experiment studied the
effect of window used on the SNR of the algorithm. Windows
tested include the Hann window, Hamming window and
Blackman-Harris window. The experiment was run several
times varying the number of components r. The value of α
was fixed at 10 and that of β at 0.1 as these were found
to be the best combination from Section III-D.2. Further,
each experiment was run for several frame sizes varying
from 39ms to 99ms in steps of 3ms except for a run at 40ms
which is reported in the original work as the used frame size.
The number of components was varied from the number of
constituent sources to an arbitrarily chosen maximum of 40.
Further, this experiment was run for four different audios and
the results recorded and averaged to obtain the variation of
SNR with frame size averaged over all sources from all the
audios for different windows. Following this, the Chebyshev
window [5] was also used to determine the impact of side
lobe attenuation and main lobe width of the windows on
SNR.

E. Results

It is worth noting that the algorithm proposed in [2] is
not guaranteed to converge. For certain settings of α and
β, it can diverge. This can be seen in Figure 6. Results of
the experiment described in Section III-D.1 are presented in

Fig. 6: Loss function increases during initial iterations for r
= 300, α = 1, β = 0

Figure 7. The objective of the experiment3 was to compare
the relative performance of the algorithm from the original
work with vanilla NMF. In most cases, the performance of
the algorithm was comparable if not superior to that of plain
NMF. However, with α = 10 and β = 0.1 the proposed
algorithm clearly outperforms plain NMF. The curve displays
highly erratic as only one audio is used to perform the
experiment.

Fig. 7: Experiment 1: Variation of SNR averaged over all
sources with the number of components for three different
loss functions

Results from the experiment described in Section III-D.2
are presented in Figure 8. These results are very similar
to those presented in [2]. However, the use of a single
component does add some noise to the graphs. Further, it
can be seen from Figure 8 that the highest values of SNR
occur at α = 10 and β = 0.1. This can be seen even for
other values of r and hence is used as the default setting of
α and β for all further experiments.

3 https://tinyurl.com/yxen6g5l

(a)

(b)

Fig. 8: Variation of SNR with number of components when
(a) β = 0 (b) α = 0

Varying the windows as described in Section III-D.3 at
a frame size of 40 ms produced results shown in Figure 9.
It is quite evident that the Hamming and Hann windows
outperform Blackaman-Harris at low frame sizes and are
beaten by Blackman-Harris at higher frame sizes.

This is even more evident in the case of Figure 10 which
shows that one obtains the highest SNR when frame size is
set to 40ms as suggested by the author of the original paper.
All the three windows perform nearly the same at 40ms.
In fact, the Blackman-Harris window outperforms the others
only at sizes higher than this frame size. Further, it can be
seen from Figure 11 that the Chebyshev window does not
perform as well as the other three windows at 40ms. This
experiment was run by setting the attenuation to the same
as Hamming window i.e 43dB and letting the Chebyshev
window optimise for the smallest main lobe width. The
average SNR does not cross 9dB which is lesser than that
of the other three windows at 40ms.

F. Discussion and future work

Most of the results obtained closely follow the trends
presented in the original paper. However, it can be seen
that most of the graphs display a high degree of variance.

(a)

(b)

Fig. 9: Variation of SNR with number of components when
(a) frame size = 93ms (b) frame size = 36ms

Fig. 10: Variation of SNR with different frame sizes averaged
over all sources from four audios

Fig. 11: Variation of SNR with number of components for a
Chebyshev window at 40ms

Further, they tend to smooth out when more audios and
sources are used as is seen in Figure 10. Therefore, it is
evident that more sources and audios need to be used to
produce results identical to those produced in the original
work. At the time of this work, the audio samples used in
[2] were no longer available. However, equivalent datasets
that supply musical notes can be used to produce more
mixtures and data. Further, in experiment 3, only the effect
of decreasing mainlobe width was tested and it was seen that
it decreased performance. However, an alternative is to retain
the same mainlobe width as Hamming and then increase the
attenuation for the same frame size. This would give one
a clearer idea of which of main lobe width and side lobe
attenuation has greater impact on the SNR. While the author
of the original paper observes that the sparseness criteria did
not have any major impact on the factorization, this lack of
impact was not observed in Experiment 2. It is also worth
noting that all components were allocated to a source in this
approach in contrast to the allocation of a single component
with the highest SNR to a source as was done in the original
paper.

While most of this work deals with the audio in the
frequency domain, quality of separation in the time domain
can be determined by performing listening tests. It can
be seen that the third algorithm produces better results
than plain NMF. In this work, the original phase of the
audio has been used to reconstruct sources. However, the
dependence between the phase and magnitude of a causal
signal can perhaps be used to reconstruct the phase of the
components better. Further better clustering algorithms that
allocate components to a source without using the original
sources need to be developed.

IV. CONCLUSION

This work provides a brief introduction to NMF, its appli-
cations, its use and related algorithms. In particular, the mul-
tiplicative update rules have been presented and their validity
empirically verified. This is followed by the verification of
results present in previous work regarding source separation.

In a careful survey of some implementation details, different
window functions are applied to the task and it is found that
all the tried windows produce nearly the same performance
for the given settings of hyperparameters. Finally, a few
remarks are made regarding work to be done in this direction
and the need for better phase reconstruction and clustering
algorithms is highlighted.

ACKNOWLEDGMENT

I am extremely grateful to Prof. C. S. Ramalingam for his
invaluable support and guidance. I am also grateful to Prof.
Harishankar Ramachandran and Prof. Tuomas Virtanen for
their insights and illuminating discussions.

REFERENCES

[1] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Advances in neural information processing systems,
pp. 556–562, 2001.

[2] T. Virtanen, “Monaural sound source separation by nonnegative matrix
factorization with temporal continuity and sparseness criteria,” IEEE
transactions on audio, speech, and language processing, vol. 15, no. 3,
pp. 1066–1074, 2007.

[3] N. Gillis, “The why and how of nonnegative matrix factorization,”
Regularization, Optimization, Kernels, and Support Vector Machines,
vol. 12, no. 257, 2014.

[4] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, p. 788, 1999.

[5] “Chebyshev window.” https://ccrma.stanford.edu/ jos/sasp/Dolph Cheby
shev Window Definition.html. Accessed: 2019-05-17.

