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Abstract— Automatic annotation of music with emotional
labels is a challenging task owing to the subjectivity of emotions
associated with music. Much of this work focuses on creating a
sizeable dataset with sufficient annotations that tackles the issue
of subjectivity adequately. By combining pre-existing datasets
with discrete and continuous emotional labels, a dataset with 79
hours worth of audio is obtained. All the audios are represented
as points in the valence-arousal plane and are then clustered
into four classes for the purpose of developing classifiers. CNNs
which use mel spectrograms as inputs are the primary focus of
this work. A maximum accuracy of 50.89% is obtained in the
four-class classification task with accuracies in the individual
tasks of valence and arousal classifications being 70.8% and
71.7% respectively.

I. INTRODUCTION

The inexorable growth of the internet and the increased
availability of and ease of access to music have made nec-
essary the development of efficient systems for organization
of music. This has led to much work in the area of Music
Information Retrieval. This work addresses the task of auto-
matically determining the mood (used interchangeably with
emotion) of a given track for the purpose of classification
and retrieval from a sizeable dataset.

Emotion is a very intuitive basis to categorize music on as
much of music expresses some form of it and most listeners
tend to experience some emotion when listening to music.
Whilst being intuitive, the subjectivity of the emotion per-
ceived or induced is a major challenge to mood annotation of
music. Therefore, predicting the emotion induced in a listener
is an intriguing task albeit very challenging as individual
listeners experience very different emotions when listening
to the same song. The emotion induced depends on sex, age,
culture, background, context, present mood and more. Thus,
this work pursues the relatively easier task of predicting the
perceived emotion i.e the emotion seen as being conveyed
by music which generally has greater agreement amongst
annotators. Further this choice is pragmatic as a vast majority
of datasets primarily offer annotations of perceived emotion.

A deep learning approach using convolutional neural
networks (CNNs), which have worked remarkably well in
image classification tasks and Acoustic Event Detection [1]
(AED henceforth), is employed and this necessitates the
collection of large amounts of data. While datasets such
as Audioset offer a significant amount of weakly labeled
data, correspondingly large amounts of processing power and
time are required to train models that produce meaningful
results on such data. Thus, a compromise is made between
quantity and quality and datasets designed specifically for
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music mood annotation are used for the experiments. These
include the LastFM100 corpus, Yang60 corpus, DEAM,
CAL500, Emotify, Jyvaskyla Soundtracks and the Moodo
datasets all of which are publicly available. Two datasets
created internally by Fraunhofer IDMT are also used for
this task. A total of 3329 audio tracks of varying length
amounting to 79.27 hours of data with song level annotations
are available for training.

The use of multiple datasets requires the use of a uniform
representation of emotions which is either categorical or

Fig. 1. Mapping of 28 emotions onto the VA plane [2]

dimensional (see Figure 1). We use the dimensional model,
first suggested in [3], that represents emotions in the valence-
arousal plane [2] for music mood annotation. The authors
argue that a dimensional model eliminates the confusion
associated with a categorical modeling using discrete labels
which tend to be ambiguous and are prone to varied inter-
pretation. On the other hand, a dimensional model represents
every emotional state as a unique point in the valence-arousal
plane in the case of a two dimensional model. Songs closest
to a point specified by a user are returned during music
retrieval. This work employs a two dimensional model as
most datasets provide valence and arousal annotations for the
comprising audios. Further, the most often considered third
dimension of tension is highly correlated with valence [4]
and thus there is little harm in ignoring it. The data prepared
as a part of this work provides valence and arousal ratings
for every song listed with all the values normalized to belong
to [−1, 1]. The process of preparation of this final dataset is



described in detail in section II. While this work prepares the
data with valence and arousal ratings, the Geneva Emotional
Musical Scales (GEMS hereafter) prepared by Zentner et
al. is a noteworthy mention. These are musically relevant
emotional categories created specifically for the purpose of
music emotion recognition (MER henceforth). They consist
of 45 labels that can be grouped into 9 categories. This
system of categorical representation has been used in the
Emotify dataset.

Data prepared for this work can be used for future exper-
iments that predict the valence and arousal (VA henceforth)
values for supplied audios. Modifications to the VA mapping
of categorical labels can be made by altering the source code
which is made available here1. This work focuses on the
simpler task of classifying music into the four quadrants
of the VA plane. This is founded on the premise that
agreement among annotators regarding the quadrant to which
a given piece of music belongs is higher than the agreement
regarding a particular emotional label or VA values. While
less complex, it is a non- trivial task and is very similar
to the Mirex 20162 and 2017 mood classification tasks in
which entries must classify audio into five clusters. Musically
relevant features such as spectrograms spanning octaves gen-
erated using triangular filterbanks and mel spectrograms are
extracted as inputs to the convolutional networks. Processing
audios offers greater flexibility and increases the scope of
the experiments that can be conducted as different datasets
offer different musically relevant hand crafted features for
MER. Following this, experiments are conducted on multiple
architectures with different settings of hyperparameters and
the results are presented in VI.

II. DATA COLLECTION

There are multiple publicly available datasets created for
the purpose of music mood annotation and others that address
the same task whilst also offering labels for genre, instrument
and so on. Table I presents a list of such datasets of which
the ones without audios have been ignored for this work.
Some datasets however offer a list of YouTube links to the
songs annotated and a possible direction of work would be
to crawl the internet and obtain the audios for these afore-
mentioned songs. Some such datasets are AMG16083 [5],
Google Audioset4 [6], DEAP [7], NJU-MusicMood-v1.05,
Greek Music Dataset6 [8] (GMD), Greek Audio Dataset5

[9] (GAD). While AMG1608 and DEAP are ignored solely
as they do not provide audios, the Google Audioset dataset
is not generated as it provides weak labels with only 3
annotators labeling each clip and a significant portion of
this data must be used to obtain a network that produces
meaningful results. This requires incredible computing power

1 /home/vaddmr/repo/trunk/idmt/projects/MusicMoodAnnotation/data mani
pulation.ipynb

2 http://www.music-ir.org/mirex/wiki/2016:Audio K-
POP Mood Classification

3 http://mpac.ee.ntu.edu.tw/dataset/AMG1608/
4 https://research.google.com/audioset//ontology/music mood 1.html
5 https://cs.nju.edu.cn/sufeng/data/musicmood.htm
6 https://hilab.di.ionio.gr/old/en/music-information-research/

and training time and can not be done on a budget. While
the NJU-MusicMood-v1.0 dataset does not provide audios,
it supplies lyrics which could be used for the purpose of
annotation. The GAD and GMD datasets are not a part of
this work as they do not provide audios and also because
the former is prepared by 5 annotators and the number of
annotators for the latter is unspecified as is the annotation
granularity. In this section, a brief description of the datasets
used is provided with details of how the VA ratings were
altered for this work.

A. DEAM

This database7 [10] was compiled for the 2015 Emotion in
Music task as part of the MediaEval Benchmarking Initiative
for Multimedia Evaluation. It contains 58 full songs (duration
234 ± 107s) and 1744 clips 45s in length. Developed for the
purpose of dynamic MER, this dataset offers time varying
labels which aren’t used. Instead, song level annotations
(static annotations) are used. These belong to the range [1, 9]
and are normalized to [−1, 1].

B. CAL500

CAL500 [11] is a very popular dataset and has often been
used in MIR. Songs are annotated with 174 labels of which
36 are mood related tags. These tags are positive-negative
pairs with there being both Emotion and Not-Emotion tags.
Further, several issues with the original dataset are addressed
by following the steps suggested by Bob Sturm8 which have
also been adopted in the creation of the CAL500 expansion
dataset [12]. The Not-Emotion labels are of very little use for
the intended classification of music and are thus discarded.
Further, all songs with positive hard annotations (values
of 1) for the emotion tags of Emotion-Bizarre / Weird,
Emotion-Loving / Romantic, Emotion-Positive / Optimistic,
Emotion-Tender / Soft, Emotion-Touching / Loving were
discarded owing to the difficulty of placing them on the VA
plane. Upon further discarding songs that have no positive
emotion associated with them, only 275 songs remain and
are mapped to the VA plane.

Every emotion tag is associated with a pair of VA
values as follows- Angry / Agressive ([-0.6, 0.6]), Arous-
ing / Awakening ([0.2, 1]), Calming / Soothing ([0.4, -0.7]),
Carefree / Lighthearted ([1, 0]), Cheerful / Festive ([0.6,
0.6]), Emotional / Passionate ([0.2, 1]), Exciting / Thrilling
([0.707, 0.707]) [2], Happy ([1, 0.4]), Laid-back / Mellow
([0.8, -0.6]), Light / Playful ([1, 0]), Pleasant / Comfortable
([0.8, -0.6]), Powerful / Strong ([0.2, 1]), Sad ([-0.8, -0.4]).
These are obtained from two sources- an internal mapping
developed by Fraunhofer IDMT over the course of a project
(see Table II) and from [2]. The CAL500 dataset also pro-
vides soft annotations that describe the fraction of annotators
who deemed it appropriate to associate a particular tag with
a song. The final VA values for a song are the weighted
average of the VA values equivalent to the labels associated

7 http://cvml.unige.ch/databases/DEAM/
8 http://media.aau.dk/null space pursuits/2013/03/using-the-cal500-

dataset.html



Dataset Annotation method Number of songs/
excerpts

Total duration of audio
(in hours)

Annotation
granularity

(in s)
DEAM (MediaEval) MTurk 1802 25.58 45

AMG1608 MTurk 665 annotators 1608 13.4 30
MoodSwings MTurk 546 annotators 240 1 15

Jyvaskyla Soundtrack dataset Manual annotation 116 annotators 110 0.45 10 - 30
Lastfm100 corpus - 100 0.83 30

Moodo 952 annotators 200 0.83 15
Emotify GWAP 400 6.66 60
Yang60 40 Annotators 60 0.5 30

Emotion VW - 32 - Song level
Mood circumplex training - 418 - Song level

CAL500 66 annotators 500 26.6 Song level
CAL500 expansion dataset 11 annotators 500 Not given. Can’t say.

Magnatagatune GWAP 22863 132 29
Google Audioset Manual annotation 16955 47 10

DEAP dataset 32 participants 120 (online assessment)
40 (self rating)

2 (online assessment)
0.666 (self rating) 60

NJU-MusicMood-v1.0 - 777 Not given. Song level
Greek Audio dataset Manual annotation 1000 Not given. Can’t say.
Greek Music dataset Manual annotation 1400 Not given. Can’t say.

TABLE I
DATASETS USED IN THIS WORK

Emotion Valence Arousal
happy 1 0.4

relaxing 0.8 -0.6
calm 0.4 -0.7

danceable 0.6 0.6
fun 1 0

energetic 0.2 1
melancholic -0.8 -0.4
aggressive -0.6 0.6
stressful -0.1 0.8
dramatic -0.2 0.5

TABLE II
MAPPING OF EMOTIONS FROM A FRAUNHOFER PROJECT

with a song with the soft annotations as the weights. Perhaps
a better approach is to obtain such weighted sums for all
songs and normalize them using the highest set of absolute
VA values assigned to any song.

The CAL500 expansion9 dataset is an extension of the
CAL500. It uses the same audios and is designed for dynamic
MER with very carefully chosen representative segments that
are determined by using k-medoids clustering on acoustically
homogeneous segments extracted from the audios. This leads
to nearly 6.4 segments per song. This method appears to
be much more robust than annotating clips with arbitrarily
chosen starting points and lengths. However, this dataset is
not relevant to this work as the main focus is on obtaining
track level annotations.

C. LastFM100 corpus

The LastFm100 corpus is comprised of 100 audios classi-
fied into four classes- Anxious Frantic, Content, Depressed
and Exuberant each of which is given a corresponding VA
rating (see Table III) that is consistent with the mapping for
the CAL500 dataset.

9 http://slam.iis.sinica.edu.tw/demo/CAL500exp/

Emotion Valence Arousal
Anxious Frantic -0.1 0.8

Content 0.8 -0.6
Depressed -0.8 -0.4
Exuberant 1 0.4

TABLE III
VA MAPPING FOR LASTFM100 CORPUS

D. Jyvaskyla Soundtracks

Jyvaskyla Soundtracks dataset10 [4] consists of two sets of
annotated tracks- 360 from a pilot experiment and a subset
of the same with 110 tracks. The latter set is included in this
work as these songs are annotated by 116 annotators whereas
the former are annotated by the 12 ’expert musicologists’
who selected them and consequently, the generated VA
ratings are not very representative of the emotions perceived
when listening to this music. The VA ratings belong to the
range [1, 9] and are normalized to belong to [−1, 1].

Eerola et al. present a very interesting discussion on the
relation between the categorical and dimensional models and
the third dimension of tension.

E. Moodo dataset

The Moodo dataset11 [13] is one of the very few datasets
to differentiate between induced and perceived emotions.
Annotators tag songs by dragging emotion labels onto the
VA plane resulting in there being both VA values and discrete
labels for the songs. Only VA values for perceived emotion
are considered. However a provision is made1 to extract
induced emotion values from the data if need be. Further, as
multiple emotion labels can be assigned by an annotator to a
given song, each annotation is treated as being independent

10 https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/projects2/past-
projects/coe/materials/emotion/soundtracks/Index

11 http://mood.musiclab.si/index.php/en/dataset



Emotion Valence Arousal
Aggressive -0.6 0.6

Relaxed 0.8 -0.6
Melancholic -0.8 -0.4

Euphoric 1 0.4

TABLE IV
VA MAPPING FOR THE MOOD CIRCUMPLEX TRAINING DATASET

and the final VA values of a song are the average of all such
annotations. The comprising 200 songs are annotated by 952
annotators making this a very high quality dataset.

As described before, the VA equivalents for discrete emo-
tion labels are determined from [2] which employed only 36
students to arrive at the positions of the labels on the VA
plane. However, the Moodo dataset presents an interesting
opportunity to obtain VA values for some discrete emotional
tags. By extracting the VA values associated by multiple
annotators with emotional labels and averaging them out, it is
possible to obtain a more reliable VA mapping of emotional
labels.

F. Emotify dataset

The Emotify dataset12 is the only dataset in this work
that uses GEMS and is constructed from a very thoughtfully
devised game with a purpose (GWAP). 9 very musically
relevant labels are used by GEMS as they capture the
general distribution of emotions in music. However, the label
’nostalgia’ is difficult to map onto the VA plane and hence
is ignored.

G. Yang60 corpus

The Yang60 corpus is annotated by 40 annotators and
provides annotations between [−1, 1]. While a majority of
the aforementioned datasets make a concerted effort to use
music that is not very well known in order to avoid any bias
introduced by familiarity and episodic memories, the Yang60
provides annotations for popular Western music which is
likely to be encountered by the prepared system and thus
is a valuable addition to this work.

H. Emotion VW OvGU and Mood Circumplex training

These are datasets internal to Fraunhofer IDMT and follow
a classification system similar to that of LastFM100 corpus
with the emotion classes being Anxious, Content, Depressed,
Exuberant (see Table III) and Aggressive, Relaxed, Melan-
cholic, Euphoric respectively. Together, they account for 450
tracks. They are consistently mapped to the VA plane for
future use.

III. DATA PREPARATION

This work focuses on assigning given audios to one of the
four quadrants in the VA plane. While relatively simple, this
task is equivalent to assigning songs to emotion clusters each
of which lies in a particular quadrant in the VA plane and
is hence, non-trivial. All songs with positive VA values are

12 http://www.projects.science.uu.nl/memotion/emotifydata/

assigned to the first quadrant and those with negative valence
and positive arousal to the second quadrant and so forth.
While this discards much of the information collected so far,
it also removes ambiguities arising from the VA equivalents
assigned to discrete labels. This is because annotators differ
on the exact VA values for a song, but generally agree on
the emotion cluster it must be assigned to. All audios are
converted to the .wav format before further processing.

IV. DATA PRE-PROCESSING

Convolutional neural networks lead to the creation of pow-
erful models with incredible capacity. Their usage requires
that audios be converted into suitable spectrograms that can
be used as inputs to the CNN models. This work considers
two types of spectrograms generated from the STFTs of the
audios which are resampled to 44.1kHz- one in which the
frequency axis is converted to a logarithmic scale founded
on musical intuition and the mel scale which captures the
energy or power present in regions of frequencies which the
human ear is particularly sensitive to. The issue of varying
durations of the audios in this eclectic dataset is addressed by
extracting patches from the obtained spectrograms. A number
of time frames (n) each of duration ls make up a patch. Every
patch inherits the same labels as the whole song. If the time
equivalent of the hopsize used for the STFT at the specified
sampling rate is ms, then the duration of the song t captured
per song is

t = n× (l −m) +m (1)

where m = STFT hopsize/sampling rate and l =
STFT windowsize/sampling rate . The time duration
per patch t is experimented with extensively. The scientific
libraries numpy, scipy and librosa are used for the extraction
of the relevant features.

A. The Musical scale

The frequency range which is selected to be from 50Hz
to 15000Hz is divided into octaves resulting in the axis
spanning 8.228 octaves with each 12 semitones (logarithmic
with base 2) between every octave resulting in 99 semitones
which serve as bins. This is motivated by the musical scale
and its aptness is evaluated through experimentation. The
logarithm of the spectrogram is multiplied with a triangular
filterbank which is used to better capture the information
at frequencies that are muscially important. Patches are
extracted from the obtained spectrogram. The number of
frames used to make a patch is varied to determine the ideal
setting of this hyperparameter.

B. Mel scale

Most CNN approaches to audio classification tasks use mel
spectrograms as they capture information adequately at lower
frequencies and grow less discriminatory at higher frequen-
cies emulating the behavior of the human ear which perceives
equal changes in pitch with larger changes in frequency at
higher frequencies. 40 mel filters are used, leading to 40 bins
in every spectrogram. The use of Slaney’s implementation
[14] for the construction of the mel filterbanks leads to the



the first 9 frequencies being linearly spaced (till 958 Hz)
and the remaining being logarithmically spaced. The mel
spectrogram is normalized by the highest value. A small
value ε = 10−8 is added to the spectrogram and the logarithm
is taken. Patches are extracted from the spectrograms to be
fed as the input to our network. Multiple choices for t are
tested by varying the parameters n, m, l and using equation
1. The duration represented by every patch is given four
values- 1.17s, 2.003s, 2.82s and 6.923s.

V. EXPERIMENTS

Three CNN architectures are experimented with in this
work. The first is a model that has been found to pro-
duce excellent results in music speech discrimination at
Fraunhofer IDMT. Kernel sizes, dropout ratios, l2 regular-
ization are all experimented with. The second is a model
submitted by Thomas Lidy and Alexander Schindler [15]
to the MIREX 2016 mood classification task. The third
model has four hidden layers with rectangular filters aimed
at capturing more temporal and frequency information than
before. Further, networks are trained both to classify music
into four quadrants and to classify them separately as high
and low valence or arousal. A categorical crossentropy loss
function is used for all four-class classification experiments
and binary crossentropy for valence and arousal classificaton.
All networks are implemented in Keras and the results are
recorded.

A. Four-class classification

1) Model1: Model1 (see Fig. 2) has two units of two
convolutional layers followed by a layer of Max pooling.
Every convolutional layer applies 32 filters. This is followed
by a dense layer with 256 units followed by the output layer.
Dropout with a probability of 0.5 is used before every dense
layer. All kernels are 5 × 5. This model is a test of how
well conventional ideas in vision carry over to analysis of
audio. All layers are initialized with the He initializer. Relu
activations are used for all the layers.

2) Model2: This model contains a single convolutional
layer with 30 10 × 12 filters. This is followed by a max
pooling layer with a kernel of 1 × 20. Finally a 200 unit
densely connected layer is connected to the output layer. All
layers are initialized with the Glorot uniform initialization.
Leaky Relu activations are used for all the layers with an
α = 0.3. A dropout value of 0.5 is used for all the densely
connected layers.

B. Two-class classification

1) Model3: A model very similar to that of Model1 is
used for the task of valence and arousal classification with
the main difference being that the 256 unit densely connected
layer is replaced by two 512 unit fully connected layers. The
output layer’s softmax activation function is replaced by a
sigmoid activation.

Fig. 2. Model1

2) Model4: This is a two layer convolutional network
employing filters of dimensions 20×5 and 5×20 followed by
a max pooling layer with a 3 × 3 kernel and convolutional
layer of 32 filters with kernel size 3 × 3. This is directly
connected to the output layer after flattening. Dropout with
probability 0.5 is used. The output is a sigmoid layer. All
weights are initialized with the He initializer.

VI. RESULTS

Results of the experiments that produced any meaningful
outcomes are reported in Table V. Most models are highly
prone to overfitting which simple l2 regularization (for
the convolutional layers) and dropout do not fix. Multiple
representations of the data are attempted. Hyperparameters
are tweaked as necessary to improve performance and find
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the best values. A better approach would definitely be
using a grid search to find the best set of values.

Model1 is the best performing model for the four-class
classification task with a filewise train accuracy of 0.51 when
trained with the whole dataset which leads to 415 files per
quadrant for training when balanced, 47 per class for cross
validation and is evaluated on 334 files. However, this is not
a very reliable figure as all the models suffer from severe
overfitting implying that very little learning has happened.

Performance is much higher on valence and arousal clas-
sification, which is to be expected as these are simpler tasks
with only two classes. Even a test accuracy of ≈0.7 implies
that the quadrant assigned to a given file is correct with the
probability 0.7 × 0.7 = 0.49. The final system built from
this work is a python script that takes as a command line
argument the path to the folder containing all the files that
need to be annotated and outputs the valence and arousal of
the songs. The models used for the prediction are the ones
with the best test set accuracy during training as shown in
Table V.

VII. FUTURE WORK

This section highlights the possible directions of future
work that build on what has been presented in this work. All
the networks trained so far have shown massive overfitting,
including the relatively simple architectures such as Model3.
This leads one to suspect that the very nature of data
being presented is flawed. While normalizing every mel
spectrogram by the highest value does improve performance,
another approach would be to normalize across patches
ensuring all patches that inherit a label from the given audio
possess similar amplitude level. Greater experimentation with
the parameters associated with the creation of patches would
perhaps yield better results. Further, early stopping with
a patience of 10 has been used to avoid overfitting. This
consequently reduces performance on the training set as
well. Implementing more complex early stopping methods
[16] can increase train accuracy while not compromising
generalization. Transfer learning is an approach that has not
been used in this work and fine-tuning pre-trained networks
which have been used for audio applications such as music
speech discrimination is one possible avenue of producing
better results. Using pre-trained networks such as VGGish13

which have been trained on the Audioset dataset as feature
extractors could also lead to better results. The use of large
datasets such as the Million Song Dataset 14 and Audioset
which have relatively weak labels for pre-training is an
idea to be tested. Another major area of focus is the task
definition. Prediction of VA values for a song would greatly
increase the flexibility of the mood annotation system and
afford much finer placement of songs for retrieval. While
the major thrust of this work has been to use CNNs, LSTM-
RNNs have shown remarkable results [17] on the MediaEval
Emotion in Music task which uses a dataset of comparable
size.
13 https://github.com/tensorflow/models/tree/master/research/audioset
14 https://labrosa.ee.columbia.edu/millionsong/

Another area this work has not covered is the usage of
lyrics. This approach is generally not favored owing to the
unavailability of lyrics or the difficulty of obtaining them
for the songs one wishes to annotate. Datasets such as NJU-
MusicMood-v1.04 and LAMP [18] do provide lyrics and can
be used in future work in music mood annotation.

For work focusing on better prediction of VA values, a
more comprehensive mapping of emotional labels to the VA
plane is necessary. As mentioned in section II, one possible
method of achieving this is by extracting the equivalent VA
values from the Moodo dataset. Some interesting questions
to consider are if and how much noise is introduced into
the data due to the varying understanding of valence and
arousal amongst annotators from dataset to dataset and
among annotators labeling songs in a given dataset.

VIII. CONCLUSION

This work has described the development of a music
emotion recognition system that labels a given audio of a
song with positive or negative valence or arousal tags. A
database of nearly 79 hours of audio is created with only
VA ratings. The use of the musical scale in spectrograms
does not produce any results significantly better than those
obtained by using the mel spectrogram. The performance of
the selected models does vary with the duration each patch
represents. All the models used in this work show significant
overfitting and only reach an accuracy of 50.89% leading one
to conclude that better pre-processing of data and perhaps the
use of models such as LSTM-RNNs is necessary to improve
accuracy.
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