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LIGO
A Brief Overview

o Motivation - the what and why of the beam tracking
project
e Methods and results-

» \Weighted pixel sum
» OpenCV based image processing
» Major thrust: Neural networks - CNN and LSTM based approach

e Future work
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LIGO
Beam tracking - what and why?

o To detect gravitational waves we would like the LIGO
interferometers to operate at highest sensitivity.

o Need laser beam spot to be positioned at particular
positions despite seismic noise.

o Therefore, the objective is to build a black box that
can look at video feed of scattered light from optic
and predict position of beam spot on the optic.
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LIGO
Beam tracking - more of the why

o« Why a camera feed? Why not a QPD? Why not A2L

measurements?
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LIGO
Methods

o Simple techniques
» \Weighted pixel sum
» |mage processing

o More sophisticated/general approach

» CNNs
» CNN-LSTMs
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LIGO

Methods

Simple pixel sum

The centroid of the beam spot is calculated as the weighted
sum of the pixel coordinates with the pixel intensities as
weights. This is essentially a center of mass calculation.
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LIGO
Methods

Simple pixel sum

y coordinate of centroid

No processing
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LIGO

Methods
OpenCV based approach
- Median | I chold—> Contour |, Centroid
blur detection Computation
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LIGO

Methods
OpenCV based approach

variation of y coordinate

y coordinate of beam spot

Works well for simulated Gaussian beam spot datal! Fails for real video data.
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LIGO
Methods

Why do simple techniques fail?

e The intensity profile of the beam spot is no longer Gaussian.
e The relation between video of beam spot motion and position of
the spot is complex and nonlinear.

e Further, these methods are not general and require a degree of
hard coding- threshold value for instance.
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LIGO

Methods

Neural Networks

e What are neural networks?
y = f(x;W,b)

e These weights and biases
can be “learnt” using
optimization algorithms.

e CNNs are used as this is an
Image processing task.
They are better suited to
handling images because
of weight sharing.
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LIGO

Methods

Neural Networks - the training

Input motion

» Test mass

Beam spot
motion

Optimizer: Adam

GigE Video

Optimizer

l

Predicted position

»Neural network

Loss
function

T

QPD

Loss function: Mean squared error
Framework: Keras with tensorflow backend

Hidden layer activation: relu
Output layer activation: linear

Regularization: Dropout
Preprocessing: crop and apply median blur

SURF 2019

True beam spot position

12/19



LIGO

Methods

Neural Networks - CNNs

2D convolution

Graphics retrieved from
https://towardsdatascience.com/a-comprehensive-guide-to-co
nvolutional-neural-networks-the-eli5-way-3bd2b1164a53

Max pooling
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LIGO
Methods

Neural Networks - CNN architecture

Input shape: 350 x 350 x n Convolution Max pooling Flatten Dense  Output shape: 2
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LIGO
Methods

Neural Networks- testing

After much hyper parameter tuning, the following learning curves.
Learning curves
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LIGO
Methods

Neural Networks- testing

Y coordinate motion
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LIGO
Future work

o Collect and train on data at different frequencies,
amplitudes and exposure times.

o GANSs for simulation- data generated is similar to real
data.

o Transfer learning using weights from the previous
experiments.
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LIGO
Summary

e Need for beam tracking
o Traditional image processing

e Deep learning for beam tracking
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LIGO

Thank You!



